

Fostering Research around DECT NR+: Create Trust, Adoption and Growth

Prof. Dr.-Ing. Ma. Dolores Pérez Guirao

Ostfalia University, Campus Wolfenbüttel, Germany

DECT World 2025 - Conference & Exhibition

November 12 – 13, 2025; Eurostars Grand Central, Munich

"Publish or Perish" – Technologies also Need Visibility

Academic Research: The Engine of Wireless Innovation

 Pioneered core technologies such as MIMO, OFDM and mmWave, which are now used in modern standards.

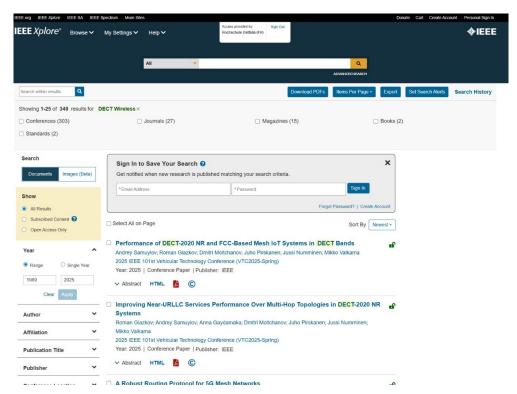
Wisibility Through Publications

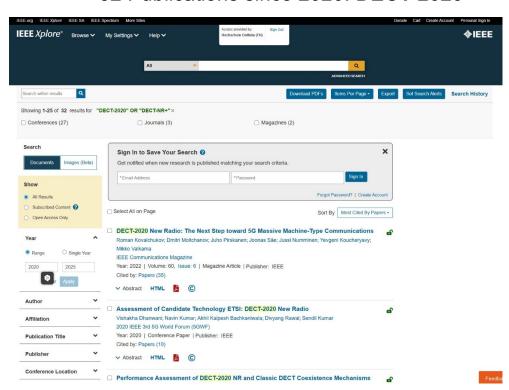
 Peer-reviewed papers and open SW-/datasets build trust and attract industry attention.

• 🟛 Influence on Standards & Policy

- Academic input shapes 3GPP, IEEE, ETSI and spectrum regulations.
- Industry Collaboration Joint projects accelerate transition from lab to market.

🔸 🖊 Adoption Modelling

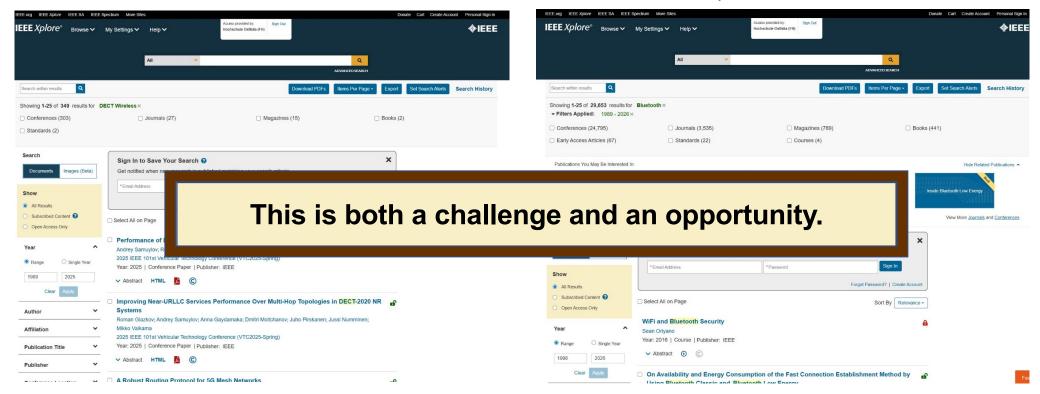

 Research informs deployment strategies and identifies barriers to adoption.



Research Activities around DECT: IEEE Xplore

349 Publications since 1989: DECT Wireless

32 Publications since 2020: DECT-2020



Research Activities around DECT: IEEE Xplore

349 Publications since 1989: DECT Wireless

....29,653 publications around BT

Benchmark: Academic Footprint of Other Technologies

~ 10K Pubs since 2020

~ 5K Pubs since 2020

~ 200 Pubs since 2020

~ 100 Pubs since 2020

~80 Pubs since 2020

~ 60 Pubs since 2020

• Data collected for illustrative comparison; not based on a systematic literature review.

Flagship Projects around DECT NR+

Dec 2022 – Nov 2025 CELTIC-NEXT

Nov 2022 - July 2025

on the basis of a decision by the German Bundesta DECT-2020 NR technology to enable scalable, autonomous wireless networks for **industrial** and **real-time applications**.

Developing **private 5G networks** using DECT-2020 NR for professional audio, media production, and industrial IoT.

Building secure, resilient, and scalable communication infrastructure using **hybrid 5G mesh networks** for **critical applications** like healthcare, emergency response, and industrial automation.

Develop a **base station** (fixed terminal, FT) for networks in star topology that can use **up to 5 parallel DECT NR+ channels**. Focus are Industrial communication profiles: reliable RT & Ultra Low Power.

Some Demos

Mobile Robot with DECT NR+ control

Spectrum analyzer with eval. board

MESH IoT by Wirepas

Low Latency Video by VITEC

Mesh-based Smart metering

Audio Loopback by RFM

SDR DECT NR+ by LUH IKT

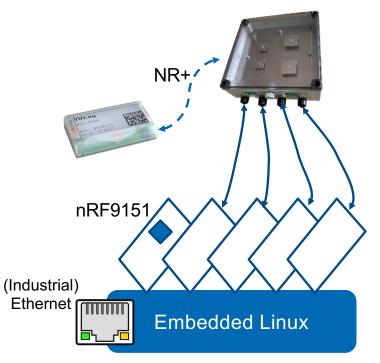
Object audio distribution chain by Ateme

9

USWA – Ultra Scalable Wireless Acccess

- Teleoperation for Robotics with Secure
 Communication NXP Live Demonstrator
 - Secure communication, latency analysis
- Live low-latency audio transmission via DECT NR+ by RFmondial
 - DECT NR+ suitability for the delivery of media content in 6G
- Improving reliability in industrial environments TU
 Dresden
 - Radio resource scheduling algorithms under realistic industrial channel conditions

DECT NR+ Base Station System for Ultra-Flexibel Transmission (DEBUT)


- Star Topology: Base station (FT) with up to 5 NR+ daughter cards, each serving a separate DECT channel
 - Industrial ultra-reliable low-latency communication
 - Industrial massive number of ultra-low power devices
 - and on synchronization between daughter cards
- Runs June 2025 until 12/2026
- Partners:
 - Hardware and operating system
 - Industrial real-time communication
 - Antennas and industrial ultra-low power communication for intralogistics
- Goal: Reference Implementation for FT & PT

Supported by:

on the basis of a decision by the German Bundestag

Solutions

Challenges We Face

- Limited open research stacks
- Proprietary or fragmented implementations
- Few public simulation frameworks and testbeds
- Few academic teaching materials

These barriers prevent researchers, SMEs, startups, and students from contributing — and from discovering the full potential of DECT NR+.

OpenDECT-X: Open Reference Stack for NR+

German BMWE co-funding for innovation concept

- 1 February 2026 to 30 November 2026
- 18 PM, 18 PM, 9 PM (Ostfalia, LMS, Sennheiser) + commitment from Nordic Semiconductor.
- Volume: approx. 0.55 million, of which approx. 0.36 million is funding.

▶ Vision: An open ecosystem for research, industry and users

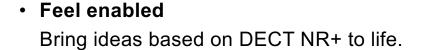
 promotes innovation, interoperability and further development of the DECT NR+ standard.

Challenge

- No open reference implementation for DECT NR+
- Barriers to entry still too high for SMEs

Objectives

- Framework for open, modular protocol stack development from MAC layer
- Audio, security & mesh functions
- Integration of standardisation & stakeholders


Benefits

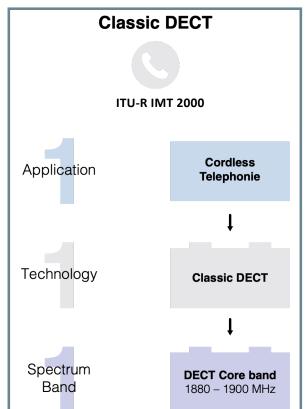
- Science: Platform for research & 6G impulses (Ostfalia)
- Industry: Integration into products, new hardware (Sennheiser, LMS, Nordic Semiconductor)

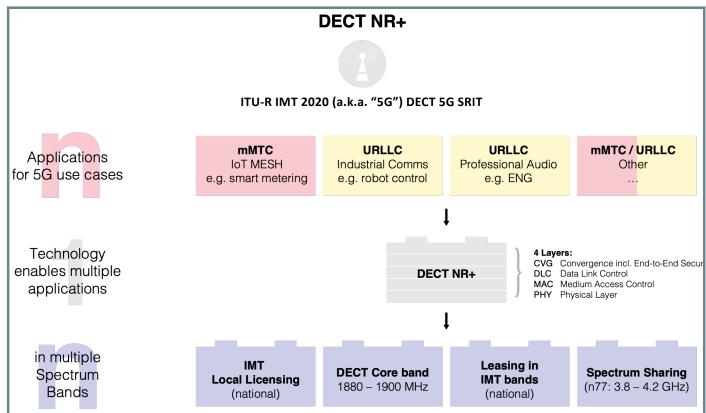
"Great things in business are never done by one person; they're done by a team of people." (Steve Jobs)

Let's make research visible, since visibility creates trust, adoption and growth

- Apply for an academic membership
- Collaborate with OpenDECT-X

Openness turns users into contributors — and technologies into ecosystems




Thank you!

Contact: m.perez@ostfalia.de

SRIT: Set of Radio Interface Technologies

HyprMesh Project Results

- Implementation of the security and integrity NR+ specification
- Extension of the existing open-source NR+ MAC layer implementation to allow for multi-hop, bidirectional communication.
- Application layer implementation to enable communication between the 5G Core (AMF) and RAN over NR+ as a virtual wire.
- Design and simulation of NR+ compatible routing algorithms and physical-layer security components.
- Creation of an open 5G testbed with multi-operator corenetwork functionality and resource management.

WIOQnet GmbH NR+ Security, System integration

> Jonathan Bechtold j.bechtold@wioqnet.de

Constructor University Bremen NR+ Resilience and Security

Prof. Dr. Giuseppe Abreu gabreu@constructor.university

Iván Morales imorales@constructor.university TU Chemnitz 5G Resilience und High-Availability

Prof. Dr. Klaus Mößner klaus.moessner@etit.tu-chemnitz.de

